RAS Chemistry & Material ScienceХимия твердого топлива Solid Fuel Chemistry

  • ISSN (Print) 0023-1177
  • ISSN (Online) 3034-607X

Microstructured Asphaltenes of Bituminous Oils

PII
S3034607X25010065-1
DOI
10.7868/S3034607X25010065
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
40-48
Abstract
The microstructure and functional composition of asphaltenes of bituminous oils from the Ashalchinskoye (Permian), Usinskoye (Permian-Carbon) and Nurlatskoye (Devonian) fields (referred to here as the Ashalchinskaya, Usinskaya and Nurlatskaya oils, respectively) and their high- and low-molecular components are studied using infrared spectroscopy and scanning and transmission electron microscopy. It is shown that asphaltenes of the Ashalchinskaya oil are characterized by smooth surface, while those of the Usinskaya and Nurlatskaya oils – by rough and porous surfaces. The sizes of asphaltene nanoaggregates of the Usinskaya and Nurlatskaya oils are smaller than those of the Ashalchinskaya oil, while the asphaltene nanoaggregates of oils from the Ashalchinskaya and Nurlatskaya oils form disordered tangled structures. A distinctive feature of the Usinskaya oil asphaltenes is the presence of better-ordered layers, which are typically associated with crystal-like formations. Asphaltenes of Ashalchinskaya and Nurlatskaya oils are characterized by enhanced aromaticity and branching of aliphatic substituents of their macromolecules, as well as a high relative content of the fragments with a sulfoxide group. Their high-molecular asphaltenes are less aromatic than the low-molecular ones, and the conditional content of carbonyl and sulfoxide groups in their composition is lower. The content of aliphatic fragments and those containing carbonyl groups in the Usinskaya oil asphaltenes is higher. The content of sulfoxide and carbonyl groups in high-molecular asphaltenes of this oil is lower than that in low-molecular asphaltenes, while the content of aromatic fragments is, on the contrary, higher.
Keywords
битуминозные нефти асфальтены морфология поверхности функциональный состав
Date of publication
20.08.2025
Year of publication
2025
Number of purchasers
0
Views
114

References

  1. 1. Коваленко Е.Ю., Сагаченко Т.А., Мин Р.С., Огородников В.Д., Перевезенцев С.А. // ХТТ. 2023. № 2-3. С. 35. https://doi.org/10.31857/S0023117723020081 [Solid Fuel Chemistry, 2023, vol. 57, no. № 1, p. 29.. https://doi.org/10.3103/s0361521923020088]
  2. 2. Peng P., Morales-Izquierdo A., Hogg A., Strauaz O. P. // Energy Fuels. 1997. V. 11. № 6. P. 1171.. https://doi.org/10.1021/ef970027c
  3. 3. Cheshkova T.V., Sergun V.P., Kovalenko E.Y., Gerasimova N.N., Sagachenko T.A., Min R.S. // Energy Fuels. 2019. V. 33. № 9. P. 7971.. https://doi.org/10.1021/acs.energyfuels.9b00285
  4. 4. Kovalenko E.Yu., Sagachenko T.A., Cherednichenko K.A., Gerasimova N.N., Cheshkova T.V., Min R.S. // Energy Fuels. 2023. V. 37. № 13. P. 8976.. https://doi.org/10.1021/acs.energyfuels.3c01048
  5. 5. Taherian Z., Dehaghani A. H. S., Ayatollahi S., Kharrat R. // J. Pet. Sci. Eng. 2021. V. 205. 108824. https://doi.org/10.1016/j.petrol.2021.108824
  6. 6. Zojaji I., Esfandiarian A., Taheri-Shakib J. // Adv. Colloid Interface Sci. 2021. V. 289. 102314.. https://doi.org/10.1016/j.cis.2020.102314
  7. 7. Tirado A., Félix G., Al-Muntaser A.A., Chemam M.S., Yuan Ch., Varfolomeev M.A., Ancheyta J. // Energy Fuels. 2023. V. 37. № 11. P. 7927.. https://doi.org/10.1021/acs.energyfuels.3c00643
  8. 8. Ramírez-Pradilla J.S., Rubiano J., Rojas-Ruiz F.A., Orrego-Ruiz J.A. // Fuel. 2024. V. 371. Part B. 132081.. https://doi.org/10.1016/j.fuel.2024.132081
  9. 9. Silverstein R.M., Webster F.X., Kiemle D.J. Spectrometric identification of organic compounds. New York: JOHN WILEY & SONS, INC, 2005. 550 p.
  10. 10. Герасимова Н.Н., Чешкова Т.В., Коваленко Е.Ю., Сагаченко Т.А., Мин Р.С., Огородников В.Д. // Известия Томского политехнического университета. Инжиниринг георесурсов. 2022. Т. 333.
  11. 11. № 9. С. 128.. https://doi.org/10.18799/24131830/2022/9/3672
  12. 12. Brondel N., Moynihan E.J.A., Lehane K.N., Eccles K.S., Elcoate C.J., Coles S.J., Lawrencea S.E., Maguire A.R. // CrystEngComm. 2010.
  13. 13. V.12. 2910.. https://doi.org/10.1039/C000371A
  14. 14. Yang F., Tchoukov P., Dettman H., Teklebrhan R.B., Liu L., Dabros T., Czarnecki J., Masliyah J., Xu Z. // Energy Fuels. 2015. V. 29. № 8. P. 4783.. https://doi.org/10.1021/acs.energyfuels.5b00657
  15. 15. Hemmati-Sarapardeh A., Dabir B., Ahmadi M., Mohammadi A.H., Husein M.M. // J. Mol. Liq. 2018. V. 264. P. 410.. https://doi.org/10.1016/j.molliq.2018.04.061
  16. 16. Bava Y.B., Geronés M., Buceta D., Rodríguez D.I., López-Quintela M.A., Erben M.F. // Energy Fuels. 2019. V. 33. № 4. P. 2950.. https://doi.org/10.1021/acs.energyfuels.8b04318
  17. 17. Salehzadeh M., Husein M.M., Ghotbi C., Dabir B., Taghikhani V. // Fuel. 2022. V. 324. Part A. 124525.. https://doi.org/10.1016/j.fuel.2022.124525
  18. 18. Nasyrova Z.R., Kayukova G.P., Gareev B.I., Morozov V.P., Vakhin A.V. // Fuel. 2022. V. 329. 125429.. https://doi.org/10.1016/j.fuel.2022.125429
  19. 19. Tang D., Zhao Y., Han D., Xie Y. // Case Stud. Constr. Mater. 2023. V. 19. e02578.. https://doi.org/10.1016/j.cscm.2023.e02578
  20. 20. Sharma A., Groenzin H., Tomita A., Mullins O.C. // Energy Fuels. 2002. V. 16. № 2. P. 490.. https://doi.org/10.1021/ef010240f
  21. 21. Pérez-Hernández R., Mendoza-Anaya D., Mondragón-Galicia G., Espinosa M.E., Rodrı́guez-Lugo V., Lozada M., Arenas-Alatorre J. // Fuel. 2003. V. 82. № 8. P. 977.. https://doi.org/10.1016/S0016-2361 (02)00359-9
  22. 22. Trejo F., Ancheyta J., Rana M.S. // Energy Fuels. 2009. V. 23. № 1. P. 429.. https://doi.org/10.1021/ef8005405
  23. 23. Arenas-Alatorre J., Schabes-Retchkiman P.S., Rodriguez-Lugo V. // Energy Fuels. 2016. V. 30. № 5. P. 3752.. https://doi.org/10.1021/acs.energyfuels.5b02407
  24. 24. AlHumaidan F.S., Rana M.S., Tanoli N.J., Lababidi H.M.S., Al-Najdi N.A. // Arab. J. Chem. 2020. V. 13. № 5. P. 5377.. https://doi.org/10.1016/j.arabjc.2020.03.016
  25. 25. Elkhati O., Zhang B., Goual L. // Energy Fuels. 2022. V. 36. № 16. P. 8692.. https://doi.org/10.1021/acs.energyfuels.2c00925
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library