RAS Chemistry & Material ScienceХимия твердого топлива Solid Fuel Chemistry

  • ISSN (Print) 0023-1177
  • ISSN (Online) 3034-607X

Assessment of Structural Changes in Resins and Asphaltenes Depending on the Duration of Cracking Using Structural Group Analysis

PII
S3034607X25010119-1
DOI
10.7868/S3034607X25010119
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
82-89
Abstract
Changes in structural parameters of secondary resins and asphaltenes formed upon the cracking of asphaltenes, resins and their mixture were assessed at different process durations. Resins and asphaltenes isolated from heavy methane crude of Zyuzeevskoye oil field (Tatarstan) and their mixture (Resins + Asphaltenes) were cracked in a closed reactor at 450°C for 60, 90 and 120 minutes. With increasing the duration of resins and asphaltene cracking, condensation reactions leading to an increase in the yield of coke and the formation of low-molecular-weight, highly aromatic secondary resin and asphaltene molecules accelerated. It was found that the directions of thermal transformations of resin and asphaltene molecules are similar. The joint presence of resins and asphaltenes in a mixture changed the direction on their thermal transformations in the course of cracking, which was reflected in the quantitative data on the mass balance and structural parameters of secondary resins and asphaltenes formed upon the cracking of a mixture of resins with asphaltenes. Differences in the structural characteristics of resins and asphaltenes formed upon the cracking of single-component samples and their mixtures were revealed.
Keywords
тяжелая нефть асфальтены смолы крекинг структурные параметры
Date of publication
25.12.2025
Year of publication
2025
Number of purchasers
0
Views
120

References

  1. 1. Alvarez E., Marroquin G., Trejo F., Centeno G., Ancheyta J., Diaz J.A.I // Fuel. 2011. V. 90. № 12. P. 3602-3607. https://doi.org/10.1016/j.fuel.2010.11.046.
  2. 2. Магарил Р.З. Теоретические основы химических процессов переработки нефти. Л.: КДУ, 2016. 279 с.
  3. 3. Певнева Г.С., Воронецкая Н.Г., Копытов М.А. // Химия в интересах устойчивого развития. 2022. Т. 30. № 4. С. 406-412. https://doi.org/10.15372/KhUR2022396
  4. 4. Гринько А.А., Головко А.К // Нефтехимия. 2014. Т. 54. № 1. С. 43-49. https://doi.org/10.7868/S0028242113040059
  5. 5. Pham H.H., Ngoc Thuy Nguyen, Kang Seok Go, Sunyoung Park, Nam Sun Nho, Gyoo Tae Kim, Chul Wee Lee, Felix G. // Catalysis Today. 2020. V. 353. P. 112-118. https://doi.org/10.1016/j.cattod.2019.08.031
  6. 6. Ancheyta J., Centeno G., Trejo F., Marroquin G. // Energy & Fuels. 2003. V. 17. № 5. P. 1233-1238. https://doi.org/10.1021/ef030023+
  7. 7. Певнева Г.С., Воронецкая Н.Г., Гончаров А.В., Корнеев Д.С. // Solid Fuel Chemistry. 2024. V. 58. № 2. P. 111-116. https://doi.org/10.3103/S0361521924020113.
  8. 8. Patrakov Yu.F., Kamyanov V.F., Fedyaeva O.N. // Fuel. 2005. V. 84. № 2-3. P. 189-199. https://doi.org/10.1016/j.fuel.2004.08.021.
  9. 9. Корнеев Д.С., Певнева Г.С., Воронецкая Н.Г. // Нефтехимия. 2021. Т. 61. № 2. С. 172-183. https://doi.org/10.31857/S0028242121020052
  10. 10. Певнева Г.С., Воронецкая Н.Г., Корнеев Д.С., Головко А.К. // Нефтехимия. 2017. Т. 57. № 4. С. 479-486. https://doi.org/10.7868/S0028242117040128
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library