RAS Chemistry & Material ScienceХимия твердого топлива Solid Fuel Chemistry

  • ISSN (Print) 0023-1177
  • ISSN (Online) 3034-607X

Impact of Drainage on the Physicochemical Parameters of the Peat Deposit and the Chemical Composition of Peat in a Raised Boreal Bog

PII
S3034607XS0023117725030033-1
DOI
10.7868/S3034607X25030033
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
22-30
Abstract
The paper presents the results of a study of physical, chemical, and physicochemical parameters of the peat deposit in a raised boreal bog areas in both natural and drained states. Data were obtained on the quantitative content of the main groups of components in the organic part of peat (bitumens, humic and fulvic acids, easily and difficultly hydrolyzable compounds, and non-hydrolyzable residue). It is shown that the intensification of oxidative processes due to drainage leads to a slight increase in the proportion of thermodynamically stable compounds — humic acids and bitumens, as well as the non-hydrolyzable residue in peat. It was found that the most significant differences in the parameters determined in the study are characteristic of the pairs of sites “natural-drained” and “natural-rewetted”, while the differences between the disturbed sites for most parameters are not significant, as confirmed by the results of the Mann–Whitney U-test.
Keywords
торф верховое болото осушение физико-химические параметры зольность органическое вещество
Date of publication
25.12.2025
Year of publication
2025
Number of purchasers
0
Views
34

References

  1. 1. Tokarz E., Urban D. // Journal of Ecological Engi neering. 2015. V. 16. № 3. P. 20. https://doi.org/10.12911/22998993/2801
  2. 2. Ponomareva T., Zubov I., Shtang A., Orlov A., Selyanina S. // Quaternary. 2024. V. 7. № 2. Art. 19. https://doi.org/10.3390/quat7020019
  3. 3. Zubov I.N., Orlov A.S., Selyanina S.B., Zabelina S.A., Pon omareva T.I. // Mires and Peat. 2022. V. 28. Art. 05. P. 1. https://doi.org/10.19189/MaP.2020.GDC.StA.1987
  4. 4. Husson O. // Plant Soil. 2013. V. 362. P. 389. https://doi.org/10.1007/s11104-012-1429-7
  5. 5. Бамбалов Н.Н. // Природные ресурсы. 2005. № 1. С. 44.
  6. 6. Указ Президента Российской Федерации от 5 марта 2020 г. № 164 “Об Основах государственной политики Российской Федерации в Арктике на период до 2035 года” [Электронный ресурс]. URL: http://www.kremlin.ru/acts/bank/45255 (дата обращения 14.01.2025).
  7. 7. Ponomareva T., Selyanina S., Shtang A., Zubov I. // Land. 2021. V. 10. № 7. Art. 670. https://doi.org/10.3390/land10070670
  8. 8. ГОСТ 11305-2013 Торф и продукты его переработки. Методы определения влаги. М., Стандартинформ, 2014. 10 с.
  9. 9. ГОСТ 11306-2013 Торф и продукты его переработки Методы определения зольности. М., Стандартинформ, 2013. 11 с.
  10. 10. Olid C., Diego D., Garcia-Orellana J., Cortizas A.M. // The Science of The Total Environment. 2016. V. 541. P. 1222. https://doi.org/10.1016/j.scitotenv.2015.09.131
  11. 11. Бондаренко А.С., Жигунов А.В. Статистическая обработка материалов лесоводственных исследований: учебное пособие. СПб.: Изд-во Политехнического университета, 2016. 125 с.
  12. 12. Yakovlev E., Spirov R., Druzhinin S., Ocheretenko // Environmental Science and Pollution Research. 2021. V. 28. P. 25460. https://doi.org/10.1007/s11356-020-12224-7
  13. 13. Косов В.И., Беляков А.С., Белозеров О.В., Гогин Д.Ю. Торф. Ресурсы, технология, геоэкология. СПб.: Наука, 2007. 452 с.
  14. 14. Horn M.A., Matthies C., Kusel K., Schramm A. // Applied and Environmental Microbiology. 2003. V. 69. P. 74. https://doi.org/10.1128/AEM.69.1.74-83.2003
  15. 15. Vaasma T., Karu H., Kiisk M., Pensa M. // Journal of Environmental Radioactivity. 2017. V. 174. P. 78. https://doi.org/10.1016/j.jenvrad.2016.07.027
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library