- PII
- S3034607XS0023117725060036-1
- DOI
- 10.7868/S3034607X25060036
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 6
- Pages
- 32-38
- Abstract
- Rare earth (REE) and rare elements (RE) are important materials for high-tech industries. To date, coal and coal ash have been recognized as a promising, economically profitable alternative source of rare earth elements, however, the implementation of their extraction process requires the development of new approaches to concentration and leaching. In this work, waste from large lignite-coal thermal power plants in Novosibirsk was studied as sources of rare earth and rare elements. The morphology and phase composition of the samples were analyzed, as well as elemental analysis by inductively coupled plasma mass spectrometry (ICP-MS). It was found that the studied samples are characterized by an increased gallium content. The effect of preliminary mechanochemical activation (MCA) of ash on the degree of extraction of target elements has been studied. MCA was performed in the presence of various complexing reagents (etidronic acid, carbamide, EDTA, humic acids and their salts). The composition of the aqueous extracts from the treated samples was analyzed in detail. It has been shown that the highest degree of gallium extraction is achieved when using sodium humate as a complexing agent.
- Keywords
- бурый уголь зола-уноса золошлаковые отходы ТЭЦ редкоземельные элементы галлий механохимическая активация гуминовые вещества
- Date of publication
- 25.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 26
References
- 1. Binnemans K., Jones P.T. // Journal of Sustainable Metallurgy. 2015. V. 1. № 1. P. 29. https://doi.org/10.1007/s40831-014-0005-1
- 2. Gaustad G., Williams E., Leader A. // Resources, Conservation and Recycling. 2021. V. 167. P. 105213. https://doi.org/10.1016/j.resconrec.2020.105213
- 3. Balaram V. // Minerals. 2023. V. 13. № 3. P. 425. https://doi.org/10.3390/min13030425
- 4. Арбузов С.И. и др. // ХТТ. 2019. № 1. С. 3. https://doi.org/10.1134/S002311771901002X
- 5. Сорокин А.П. и др. // ХТТ. 2023. № 1. С. 13. https://doi.org/10.31857/S0023117723010097 [Solid Fuel Chemistry. 2022. V. 56. P. 1. https://doi.org/10.3103/S0361521923010093]
- 6. Вялов В.И., Гамов М.И., Настлавский А.В. // ХТТ. 2022. № 5. С. 12. https://doi.org/10.31857/S0023117722050097
- 7. Черкасова Е.В. и др. // Вестник Кузбасского государственного технического университета. 2021. № 2. С. 35. https://doi.org/10.26730/1999-4125-2021-2-35-39
- 8. Янчап Н.Н., Тасов Л.Х. // ХТТ. 2022. Т. 5. С. 52. https://doi.org/10.31857/S0023117722050103
- 9. Волынкина Е.П. // Вестник Сибирского государственного индустриального университета. 2017. № 2. Т. 2. С. 43.
- 10. Jaiswal H., Singh A.K. // Results in Earth Sciences. 2025. V. 3. P. 100064. https://doi.org/10.1016/j.rines.2025.100064
- 11. Zhang W. et al. // International Journal of Coal Preparation and Utilization. 2015. V. 35. № 6. P. 295. https://doi.org/10.1080/19392699.2015.1033097
- 12. Skripkina T. et al. // RSC Advances. 2021. V. 11. № 57. P. 36016. https://doi.org/10.1039/D1RA07228E
- 13. Grabias-Blicharz E., Franus W. // Science of The Total Environment. 2023. V. 860. P. 160529. https://doi.org/10.1016/j.scitotenv.2022.160529
- 14. Wang J. et al. // Journal of Environmental Chemical Engineering. 2024. V. 12. № 6. P. 114623. https://doi.org/10.1016/j.jece.2024.114623
- 15. Скрипкина Т.С. и др. // ХТТ. 2023. № 6. С. 40. https://doi.org/10.31857/S0023117723060087 [Solid Fuel Chemistry. 2023. V. 57. № 6. P. 402. https://doi.org/10.3103/S0361521923060071]
- 16. Yudina L.I., Skripkina T.S., Shatskaya S.S. // Current Analytical Chemistry. 2024. V. 20. № 1. P. 52. https://doi.org/10.2174/011573411028823123129105645
- 17. Наумов А.В. // Известия вузов. Цветная металлургия. 2014. Т. 2. С. 59. https://doi.org/10.17073/0021-3438-2014-2-195-203