RAS Chemistry & Material ScienceХимия твердого топлива Solid Fuel Chemistry

  • ISSN (Print) 0023-1177
  • ISSN (Online) 3034-607X

Influence of Microwave Irrigation on the Adsorption Process of 2,4-Dichlorophenoxyacetic Acid by Microporous Activated Carbon

PII
S3034607XS0023117725040026-1
DOI
10.7868/S3034607X25040026
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
22-28
Abstract
The efficiency of microwave irradiation of a microporous sample of coconut shell activated carbon was assessed using physicochemical methods. After each “adsorption–microwave irradiation” cycle, the parameters of the adsorbent's porous structure and adsorption characteristics relative to the original sample were determined. It was shown that the microwave irradiation method is not suitable for microporous samples of coconut shell activated carbons during adsorption of 2,4-dichlorophenoxyacetic acid herbicide on them.
Keywords
активированный уголь из скорлупы кокосового ореха микроволновое излучение регенерация 2,4-дихлорфеноксиуксусная кислота адсорбция кинетика
Date of publication
25.12.2025
Year of publication
2025
Number of purchasers
0
Views
31

References

  1. 1. Vedenyapina M.D., Kurmysheva A. Yu., Kulaishin S.A. //Solid Fuel Chemistry. 2024. V. 58. P. 24. https://doi.org/10.3103/S0361521924010099
  2. 2. DiStefano R., Feliciano T., Mimna R.A., Redding A.M., Matthis J. //Remediation Journal. 2022. V. 32. I. 4. P. 231. https://doi.org/10.1002/rem.21735
  3. 3. Corbett H., Solan B., Tretsiakova-McNally S., Fernandez-Ibanez P., McDermott R. //Sustainability. 2024. V. 16. I. 23. 10595. https://doi.org/10.3390/su162310595
  4. 4. Gagliano E., Falciglia P.P., Zaker Y., Birben N.C., Karanfil T., Roccaro P. //Current Opinion in Chemical Engineering. 2023. V. 42. 100955. https://doi.org/10.1016/j.coche.2023.100955
  5. 5. Zhang Y., Thomas A., Apul O., Venkatesan A.K. //Journal of Hazardous Materials. 2023. V. 460. 132378. https://doi.org/10.1016/j.jhazmat.2023.132378
  6. 6. Hatinoglu D., Edwards L., Turzo P.I., Hanigan D., Apul O.G. //Journal of Hazardous Materials. 2025. V. 491. 137885. https://doi.org/10.1016/j.jhazmat.2025.137885
  7. 7. Svabova M., Svab M., Vorokhta M. //Journal of Water Process Engineering. 2024. V. 67. Р. 106189. https://doi.org/10.1016/j.jwpe.2024.106189
  8. 8. Vedenyapina M.D., Kulaishin S.A., Chistyakov A.V., Rakishev A.K., Bulkin S.A., Tsodikov M.V., Konstantinov G.I. //Solid Fuel Chemistry. 2024. V. 58. P. 472. https://doi.org/10.3103/S0361521924700381
  9. 9. Цодиков М.В., Передерий М.А., Чистяков А.В., Константинов Г.И., Мартынов Б.И. //ХТТ. 2012. № 1. С. 39. @@Solid Fuel Chemistry. 2012. V. 46. I. 1. P. 37. https://doi.org/10.3103/S0361521912010132.
  10. 10. Цодиков М.В., Передерий М.А., Чистяков А.В., Константинов Г.И., Кадиев Х.М., Хаджиев С.Н. //ХТТ. 2012. № 2. С. 55. @@Solid Fuel Chemistry. 2012. V. 46. I. 2. P. 121. https://doi.org/10.3103/S0361521912020115.
  11. 11. Качала В.В., Хемчян Л.Л., Кашин А.С., Орлов Н.В., Грачев А.А., Залесский С.С., Анаников В.П. //Успехи химии. 2013. Т. 82. В. 7. C. 648. https://doi.org/10.1070/RC2013v082n07ABEH004413 @@Russian Chemical Reviews. 2013. V. 82. I. 7. P. 648. https://doi.org/10.1070/RC2013v082n07ABEH004413.
  12. 12. Mikhail R. Sh., Brunauer S., Bodor E.E. //Journal of Colloid and Interface Science. 1968. V. 26. I. 1. P. 45. https://doi.org/10.1016/0021-9797 (68)90270-1
  13. 13. Shahvan T. //Chemical Engineering Research and Design. 2015. V. 96. P. 172. https://doi.org/10.1016/j.cherd.2015.03.001.
  14. 14. Kurmysheva A. Yu., Vedenyapina M.D., Kulaishin S.A. //Solid Fuel Chemistry. 2022. V. 56. I. 6. P. 441. https://doi.org/10.3103/S0361521922060064.
  15. 15. Shahvan T. //Journal of Environmental Chemical Engineering. 2014. V. 2. I. 2. P. 1001.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library