RAS Chemistry & Material ScienceХимия твердого топлива Solid Fuel Chemistry

  • ISSN (Print) 0023-1177
  • ISSN (Online) 3034-607X

The Effect of Moisture on the Characteristics of Co-Incineration of Pulp and Paper Sludge and Municipal Waste

PII
S3034607XS0023117725040052-1
DOI
10.7868/S3034607X25040052
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
48-56
Abstract
The combustion behavior of a wet mixture of sludge from a pulp and paper plant and municipal waste is analyzed through complementary experiments. The collected mixed sludge was first naturally dried to decrease its initial moisture percentage to 5–9%. Pure water with mass proportions between 30 and 60% was added to the naturally dried samples to analyze their combustion behavior. Thermogravimetric experiments were carried out on the dried and humidified samples under air and applying heating rates between 5 and 100°C/min. The thermogravimetric profiles and the heat flows of the dried and humidified samples were compared. The CO, CO, and total hydrocarbons emissions were measured during further combustion experiments carried out under isothermal temperatures of 600, 700, 800, or 900°C.
Keywords
осадок сточных вод сжигание термогравиметрический профиль газообразные выбросы
Date of publication
25.12.2025
Year of publication
2025
Number of purchasers
0
Views
29

References

  1. 1. Gawilescu D. // Environmental Engineering and Management Journal. 2008. V. 7. P. 537. https://doi.org/10.30638/eemi.2008.077
  2. 2. Bajpai P. Pretreatment of Sludge. In: Management of Pulp and Paper Mill Waste. Springer International Publishing, Cham. 2015. P. 31.
  3. 3. Huilimir C., Villegas M. // Bioresource Technology. 2014. V. 157. P. 206. https://doi.org/10.1016/j.biortech.2014.01.109
  4. 4. Zawieja I. // Desalination and Water Treatment 2023. V. 301. P. 277. https://doi.org/10.5004/dwt.2023.29790
  5. 5. Hu J., Shen Y., Zhu N. // Waste Management. 2023. V. 169. P. 70. https://doi.org/10.1016/j.wasman.2023.06.033
  6. 6. Yaras A., Demirel B., Akkurt F., Arslanoglu H. // Biomass Conversion and Biorefinery. 2021. V. 13. P. 2007. https://doi.org/10.1007/s13399-020-01232-9
  7. 7. Yu Y.H., Kim S.D., Lee J.M., Lee K.H. // Energy. 2002. V. 27. P. 457. https://doi.org/10.1016/S0360-5442 (01)00097-4
  8. 8. Chiang K.-Y., Lu C.-H., Liao C.-K., Hsien-Ruen Ger R. // International Journal of Hydrogen Energy. 2016. V. 41. P. 21641. https://doi.org/10.1016/j.ijhydene.2016.06.199
  9. 9. Coimbra R.N., Panitagua S., Escapa C., Calvo L.F., Otero M. // Renewable Energy. 2015. V. 83. P. 1050. https://doi.org/10.1016/j.renene.2015.05.046
  10. 10. Yin Y., Yin H., Yuan Z., Wu Z., Zhang W., Tian H., Feng L., Cheng S., Qing M., Song Q. // BioEnergy Research. 2021. V. 14. P. 1289. https://doi.org/10.1007/s12155-021-10248-6
  11. 11. Lin Y., Ma X., Peng X., Yu Z., Fang S., Lin Y., Fan Y. // Fuel. 2016. V. 181. P. 905. https://doi.org/10.1016/j.fuel.2016.05.031
  12. 12. Shao J., Yuan X., Leng L., Huang H., Jiang L., Wang H., Chen X., Zeng G. // Bioresource Technology. 2015. V. 198. P. 16. https://doi.org/10.1016/j.biortech.2015.08.147
  13. 13. Kangash A., Kehri D., Brillard A., Maryandyshev P., Trouve G., Lyubov V., Brilhac J.-F. // Fuel. 2022. V. 316. P. 123343. https://doi.org/10.1016/j.fuel.2022.123343
  14. 14. Ling W., Xing Y., Hong C., Zhang B., Hu J., Zhao C., Wang Y., Feng L. // Science of The Total Environment. 2022. V. 845. P. 157376. https://doi.org/10.1016/j.scitotenv.2022.157376
  15. 15. Gong K., Li X., Liu H., Cheng X., Sun D., Shao Q., Dong M., Liu C., Wu S., Ding T., Qiu B., Guo Z. // Carbon. 2020. V. 156. P. 320. https://doi.org/https://doi.org/10.1016/j.carbon.2019.09.046
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library